The 2005 Amazon drought legacy effect delayed the 2006 wet season onset Mingjie Shi^{1,2}, Junjie Liu¹, John Worden¹, Anthony Bloom¹, Sun Wong¹, Rong Fu² 1 Jet Propulsion Laboratory, California Institute of Technology 2 Joint Institute for Regional Earth System Science and Engineering, University of California at Los Angeles Aura Science Team Meeting, Pasadena, 2019 #### **Motivation** Amazonia has been experiencing severe droughts in the recent decades. The SeaWinds Scatterometer onboard QuikSCAT (QSCAT) captured the long-term impact (i.e., legacy effect) of the 2005 drought in southern Amazonia (4°–12°S, 76–66°W). ### **Scientific questions** - Does the drought legacy effect on trees influence southern Amazonian wet-season precipitation onset? - If so, what land-atmosphere feedback processes cause the changes of wet-season onset (WSO) over southern Amazonia? - Here, the observed WSO is defined as the first date when the pentad (i.e., 5-day) mean rain rate exceeds the climatological annual mean rain rate of the same rainfall dataset during six out of eight pentad (Li and Fu, 2004). #### TRMM shows that the WSO is delayed after the 2005 drought | Year | Pentad | Year | Pentad | |------|--------|------|--------| | 2001 | 59 | 2009 | 60 | | 2002 | 63 | 2010 | 61 | | 2003 | 66 | 2011 | 59 | | 2004 | 64 | 2012 | 61 | | 2005 | 64 | 2013 | 55 | | 2006 | 64 | 2014 | 61 | | 2007 | 58 | 2015 | 66 | | 2008 | 66 | Mean | 62 ± 3 | Hypothesis: Evapotranspiration (ET) variation associated with canopy biomass change triggers the wet season onset delay. ## Datasets used in this study - The atmosphere over the southern Amazon has two main moisture sources: rainforest ET and ocean evaporation (Salati et al. 1979). - We study the two water vapor sources from multiple observations over the southern Amazon. P is precipitation, E is ET, $-\nabla$.(QV) is the large-scale water convergence flux (Wong *et al.* 2016). | Datasets | Purpose | |--|--| | Specific humidity and wind speed from ECMWF re-analysis (ERA) | To identity the baseline years with similar atmospheric large-scale water vapor convergence compared to 2006 | | A precipitation, runoff, and terrestrial water storage based ET product (ET _{OBS}) | To evaluate the ET variations of the baseline years | | Deuterium retrievals from the Tropospheric Emission Spectrometer (TES) | To separate the ET sources (i.e., local ET or oceanic evaporation) of the baseline years | #### Observed wet season onset and water vapor dynamics | | ERA Q _{ATMO}
(mm month ⁻¹) | Pentad of wet season onset | |------|--|----------------------------| | 2006 | 32 | 64 | | 2003 | 21 | 66 | | 2004 | 22 | 64 | | 2007 | 48 | 58 | | 2009 | 30 | 60 | | 2014 | 55 | 61 | | Mean | 35±15 | 62±3 | - Q_{ATMO} is calculated by following Wong et al. (2016). - We select baseline years during 2001– 2015 with -6 0 pentad (i.e., -30–0 day) Q_{ATMO} Q_{ATMO, 2006} < 1σ. - Five years are selected and they are 2003, 2004, 2007, 2009, and 2014. ### A new ET product - To better identify the ET variations in the study region, we use a new ET product (i.e., ET_{OBS}). - Sub-basin ET estimates and associated uncertainties are derived based on 3 precipitation, 3 GRACE retrievals and 14 runoff stations from the ORE_HYBAM network for the 2003– 2013 period. $$ET = P - R - dS/dt$$ where P is precipitation, R is runoff, S is water storage, and t is time. This ET product shows reduced ET in 2006 compared to the other base-line years We calculate the basin area-averaged ET in 2006 and in the five selected baseline years. - Compared to the mean ET in the baseline years, the September, October, and November (SON) ET in 2006 decreases by 20%. - The observed drought legacy effect on forest triggered ET reduction in 2006. 2006 #### Water isotopes | Stable water isotopes are | $\delta D = 1000 \times \left(\frac{R}{R} \right)$ | |--|--| | Datasets | Purpose | | Deuterium retrievals from the Tropospheric Emission Spectrometer | To separate the ET sources (i.e., local ET or oceanic evaporation) of the baseline | | (TES) | years | Molecular differences among common isotopes, such as H₂ ¹⁶ O and HDO, cause fractionation during most phase transitions: R_{std} =3.11×10⁻⁴ Tropical ocean: isotopic composition of -70 to -90‰, Rainforest ET: 0 to -60‰ (Risi et al. 2013; Wright et al. 2017) $/R - R_{\rm red}$ Evaporation from the ocean surface & condensation during trasnport deplete deuterium #### **TES observed HDO variations** TES δD (825–600 hPa) is sampled to 4° latitude x 4° longitude spatial resolution. #### 2009 minus 2006 The mean δD value of 2006 (-119.4 \pm 9.3‰) is relatively lower to those of 2007 (-110.0 \pm 13.1‰) and 2009 (-110.2 \pm 8.4‰). #### TES observed HDO indicates reduced local ET in 2006 Larger specific humidity is associated with lower δD values in 2006 than in the other two years, as there are fewer observations (i.e., red dots) between the green lines. ECMWF-ERA 500 hPa vertical velocities: | Year | Unit (Pa s ⁻¹) | |---------------------------|----------------------------| | 2006 | 0.012 | | 2007 | 0.018 | | 2009 | 0.016 | | Mean _{2001–2015} | 0.015 ± 0.003 | This result suggests a smaller relative contribution from local ET in 2006. (Shi et al., GRL, 2019) #### **Discussion and Conclusions** - 1) Wet season onset in southern Amazonia is delayed in 2006 as shown by TRMM precipitation. - A precipitation, runoff, and terrestrial water storage based ET product shows that ET is reduced in the late transitional stage of 2006. - 3) Compared to 2007 and 2009, the relative contribution of local ET to precipitation is reduced during the 2006 late transition. - 4) The results in this study imply an important land—atmosphere feedback due to the drought legacy effect. # Acknowledgments NASA Carbon Cycle Science, and Aqua-Terra Science Team Program Thanks for your attention!